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Abstract
Background and purpose: Mitochondrial diseases (MDs) are heterogeneous disorders 
caused by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) associated 
with specific syndromes. However, especially in childhood, patients often display hetero-
geneity. Several reports on the biochemical and molecular profiles in children have been 
published, but studies tend not to differentiate between mtDNA- and nDNA-associated 
diseases, and focus is often on a specific phenotype. Thus, large cohort studies specifi-
cally focusing on mtDNA defects in the pediatric population are lacking.
Methods: We reviewed the clinical, metabolic, biochemical, and neuroimaging data of 
150 patients with MDs due to mtDNA alterations collected at our neurological institute 
over the past 20 years.
Results: mtDNA impairment is less frequent than nDNA impairment in pediatric MDs. 
Ocular involvement is extremely frequent in our cohort, as is classical Leber hereditary 
optic neuropathy, especially with onset before 12 years of age. Extraneurological mani-
festations and isolated myopathy appear to be rare, unlike adult phenotypes. Deep gray 
matter involvement, early disease onset, and specific phenotypes, such as Pearson syn-
drome and Leigh syndrome, represent unfavorable prognostic factors. Phenotypes re-
lated to single large scale mtDNA deletions appear to be very frequent in the pediatric 
population. Furthermore, we report for the first time an mtDNA pathogenic variant as-
sociated with cavitating leukodystrophy.
Conclusions: We report on a large cohort of pediatric patients with mtDNA defects, add-
ing new data on the phenotypical characterization of mtDNA defects and suggestions for 
diagnostic workup and therapeutic approach.
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INTRODUC TION

Mitochondrial diseases (MDs) are heterogeneous disorders pre-
senting with extreme phenotypic and genotypic variability. Both 
nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) control mi-
tochondrial functions; mtDNA encodes for 13 structural oxidative 
phosphorylation components, 22 transfer RNAs (tRNAs), and two 
ribosomal RNAs for mtDNA translation.

More than 250 potentially pathogenic mtDNA variants have been 
reported (https://www.mitom​ap.org/), associated with different phe-
notypes. Leigh syndrome (LS; Online Mendelian Inheritance in Man 
[OMIM] #256000) is the most common, defined by focal and/or bi-
lateral symmetric deep gray matter lesions and associated with both 
nDNA and mtDNA mutations, especially in MT-ND genes encoding 
for complex I (CI) subunits and MT-ATP6 gene. LS related to MT-ATP6 
point mutations (usually m.8993T>G) is conventionally known as ma-
ternally inherited LS. This variant is also associated with neuropathy, 
ataxia, and retinitis pigmentosa (NARP; OMIM #551500) syndrome, 
with a variable heteroplasmic rate. Mitochondrial encephalopathy 
with lactic acidosis and strokelike episodes (MELAS; OMIM #540000) 
syndrome, strongly associated with the m.3243A>G mutation in the 
MT-TL1 gene, is characterized by recurrent strokelike episodes (SLEs), 
seizures, headaches, and hyperlactacidemia. Myoclonic epilepsy 
with ragged-red fibers (MERRF; OMIM #545000), related to the 
m.8344A>G change in the MT-TK gene, presents with seizures, my-
oclonus, and ataxia. Subacute, painless, bilateral optic nerve degen-
eration leading to vision loss is the hallmark of Leber hereditary optic 
neuropathy (LHON; OMIM #535000), associated with m.3460G>A, 
m.11778G>A, and m.14484T>C variants, in MT-ND1, MT-ND4, and 
MT-ND6, respectively. Ocular myopathy characterizes progressive ex-
ternal ophthalmoplegia (PEO; OMIM #530000), due to a single large 
scale mtDNA deletion (SLSMD). When additional neurological symp-
toms are present, the term PEO plus is used. The same SLSMD causes 
Pearson syndrome (PS; OMIM #557000) or Kearns–Sayre syndrome 
(KSS; OMIM #530000); PS is a multisystem MD primarily character-
ized by early onset refractory sideroblastic anemia; KSS is defined by 
early onset, PEO, pigmentary retinopathy, heart blocks, ataxia, sen-
sory hearing loss, and endocrinopathy.

Several reports regarding MDs in children [1–8] are available; 
however, they tend to not differentiate between MDs due to mtDNA 
or to nDNA alterations [9–12]. The largest cohort of mtDNA-related 
MDs, recently published, comprises 27 patients [13]. Thus, data 
about the actual frequency of mtDNA pathogenic variants, pheno-
type distribution, and natural history in childhood remain unavailable.

The lack of knowledge on the impact of these diseases is a seri-
ous limitation for their clinical and genetic management and for ex-
perimental treatment approaches (e.g., oocyte donation, where the 
nDNA from an oocyte containing mutated mtDNA is transferred to 
an oocyte with functional mitochondria [14]).

The purpose of this study is to analyze a cohort of patients from 
a tertiary neuropediatric center, to identify genotype–phenotype 
correlations, define possible emerging phenotypes, investigate prog-
nostic factors, and improve the diagnostic and therapeutic approach.

METHODS

We reviewed the findings of children with MDs diagnosed at 
Fondazione IRCCS Istituto Neurologico Carlo Besta from 2000 to 
2020 and selected cases with confirmed mtDNA point mutations/
SLSMDs. Analyzed data included family history, age at onset, pre-
senting symptoms, clinical evolution, brain magnetic resonance 
imaging (MRI), metabolic data, respiratory chain enzyme activity in 
muscle and/or fibroblasts, and genetic diagnoses.

Molecular analysis was performed on genomic DNA extracted 
from muscle, blood, fibroblasts, or other tissues. mtDNA macrodele-
tions were detected by Southern blotting analysis [15]; the percent-
age of heteroplasmy was estimated by the densitometric analysis 
of the wild-type and mutant bands. Until 2016, mtDNA was poly-
merase chain reaction-amplified and then sequenced according to a 
standardized protocol [16], replaced since 2016 by next generation 
sequencing approaches [17].

Our study is retrospective, which could be a limitation. However, 
only few data were not available for all patients; we believe this does 
not affect the main results. Because our institution is a reference 
center for all MDs and not only those with neurological manifesta-
tions, we do not believe our cohort has any selection bias.

All the subjects' parents provided informed consent for MRI ac-
quisition, muscle or skin biopsy, and genetic analysis. Parents con-
sented to the use of anonymized personal data for scientific purposes 
according to the ethical standards of the 1964 Declaration of Helsinki.

RESULTS

One hundred fifty children (16.7%) with pathogenic mtDNA variants 
were identified among 902 children with a confirmed MD molecular 
diagnosis. Family history was available for 138 (92%), onset age and 
symptoms for 144 (96%) and 148 (99%), respectively, clinical find-
ings for all, follow-up data for 70 (47%), brain MRIs for 110 (73%), 
and plasma and cerebrospinal fluid (CSF) lactate levels for 88 (59%) 
and 25 (17%), respectively. Biochemical analyses were performed in 
87 (58%); in the other cases, molecular diagnosis was achieved with-
out need for biochemical studies.

Patients were classified in phenotypes according to clinical, neu-
roimaging, and genetic findings (Figure 1, Table 1).

Leigh syndrome

Fifty-four probands (36%) presented with LS, with an average onset 
age of 18 months (range = 0–13 years).

Family history was positive in 34.6%. In 40%, onset appeared to 
be associated with trigger factors; the main symptoms were psycho-
motor delay (PD; 31.4%) and hypotonia (18.5%).

Subsequently, hypotonia, ocular involvement, and seizures be-
came frequent (66.6%, 51.8%, and 50%, respectively), whereas 
extraneurological involvement was rare: heart disease in 11.1% 
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(Wolf–Parkinson–White syndrome in one, hypertrophic cardiomy-
opathy in three, no details for two), diabetes in 9.2%.

On MRI, basal ganglia (BG) involvement was seen in 94.4%, fol-
lowed by lesions in pontine/mesencephalic tegmentum (40.7%) or 
the thalamic/subthalamic region (24%). Other findings included cor-
tical (18.5%) and subcortical (14.1%) atrophy and white matter (WM) 
lesions (9.2%).

Hyperlactacidemia was seen in 82.6% and elevated CSF lactate 
values in 94.7%.

The main biochemical defect was CI (49%), followed by complex 
V (13.7%) and multiple complex deficiency (MCD; 7%). Biochemical 
studies were normal in 23.5% (eight m.8993T>G and four MT-ND 
gene mutations). In three cases harboring m.8993T>G mutations, 
biochemical studies were not available.

Most patients harbored mutations in MT-ND genes (55.5%) and 
in MT-ATP6 (42.6%).

Over time (data available for 36 patients [66.7%]; aver-
age = 66.1 months), 18 patients remained stable, one improved, five 
worsened, and 12 died. Patients were treated with a similar mito-
chondrial cofactor “cocktail” [18].

Data are summarized in Figure 2.

Leber hereditary optic neuropathy

Twenty-six children (17.3%), 23 males and three females, were af-
fected by LHON. Average onset age, available for 25 patients, was 
12.5 years (range = 3–17 years); one presented before 6 years of age 
(4%), six between 6 and 12 years (24%), and 18 between 12 and 
18 years of age (72%).

Family history was positive in 43.4%. Brain MRIs, performed 
in eight patients, were normal. Molecular diagnoses included 
m.3460G>A in MT-ND1 in five children (19%), m.11778G>A in MT-
ND4 in 17 (66%), and m.14484T>C in MT-ND6 in four (15%).

Treatment data were available for four patients, treated with 
several vitamins including idebenone. Three patients (11.5%) had 
follow-up data available (average = 72 months); one was stable, one 
reported improvement, and one worsened.

MELAS and MELAS-like

Data from 17 children (11.3%) were collected; 15 of them (10%) were 
classified as MELAS and harbored the classic m.3243A>G transition, 
and two (1.3%) were classified as MELAS-like, with typical clinical 
and MRI MELAS findings, carrying the m.13514A>G variant in MT-
ND5 and the m.5521G>A transition in MT-TW. Mean onset age was 
7.4 years (range = 0–15 years); family history was positive in nine 
children.

The most frequent onset manifestations were seizures (25%), 
and cognitive impairment and myopathy (12.4% each).

Subsequently, seizures became dominant (75%), followed by 
SLEs, (64.2%), pyramidal signs (31.2%), and headaches and myopa-
thy (25% each). Hypertrophic cardiomyopathy was reported in one 
patient. Hyperlactacidemia was seen in 80%.

Follow-up data (average = 35.2 months) were available for eight 
patients (47%) treated with oral Bioarginina; three were stable, three 
worsened, and two died.

Data are summarized in Figure 3.

PEO and PEO plus

Progressive external ophthalmoplegia

Twelve probands (8%) were diagnosed with PEO. Average onset age 
was 11.1 years (range = 4–17 years). In 83%, brain MRI was normal; 
in one case, cortical atrophy was reported. Biochemical studies 

F I G U R E  1  Phenotype distribution 
by percentage. KSS, Kearns–Sayre 
syndrome; LHON, Leber hereditary optic 
neuropathy; LS, Leigh syndrome; MELAS, 
mitochondrial encephalomyopathy, lactic 
acidosis, and strokelike episodes; MERRF, 
myoclonic epilepsy with ragged-red fibers; 
NARP, neuropathy, ataxia, and retinitis 
pigmentosa; PEO, progressive external 
ophthalmoplegia; PS, Pearson syndrome.
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TA B L E  1  Genetic diagnoses and associated phenotypes in our cohort.

mtDNA defect 
(%) Gene Patients, n (%)

Mutation (n 
patients)

Associated phenotypes 
(n patients) Tissue [heteroplasmy]a (range)

mtDNA mutations MT-ATP6 25 (16.6%) m.8993T>G (24) LS (23) M [97.5%] (95–100); L [91.4%] (80%–95%)

NARP (1) L [80%] (n.a.)

109 (72.6%) m.8993T>C (1) NARP (1) L [90%] (n.a.); UEC [90%] (n.a.)

MT-ND1 8 (5.3%) m.3460G>A (5) LHON (5) L [100%] (n.a.)

m.3481A>G (1) LS (1) M [80%] (n.a.); L [55%] (n.a.); F [60%] (n.a.); 
UEC [80%] (n.a.)

m.3688G>A (1) LS (1) M [100%] (n.a.)

m.3697G>A (1) LS (1) M [100%] (n.a.); L [100%] (n.a.); UEC 
[100%] (n.a.)

MT-ND2 1 (0.6%) m.4831G>>A (1) Isolated myopathy (1) M [95%] (n.a.); L [5%] (n.a.); F [0%] (n.a.); 
UEC [40%] (n.a.)

MT-ND3 12 (8%) m.10197G>A (5) LS (5) M [98%] (95%–100%); L [99.6%] 
(99%–100%)

m.10191T>C (3) LS (3) M [74.3%] (63%–80%); L [49.3%] (40%–
60%); UEC [68%] (60%–74%)

m.10158T>C (4) LS (4) M [70.5%] (61%–80%); F [50%] 
(40%–60%)

MT-ND4 18 (12%) m.11778G>A (17) LHON (17) L [94.1%] (90%–100%)

m.11777A>C (1) LS (1) M [60%] (n.a.)

MT-ND5 11 (7.3%) m.13084T>A (1) LS (1) M [85%] (n.a.); L [82%] (n.a.); F [72%] (n.a.); 
UEC [67%] (n.a.)

m.13094T>C (1) LS (1) M [50%] (n.a.); L [40%] (n.a.); F [30%] (n.a.)

m.13513G>A (6) LS (6) M [64.5%] (50%–80%); L [46.5%] (40%–
53%); F [48.2%] (32%–70%)

m.13514A>G (3) LS (2) M [60%] (50%–70%); L [34.4%] (4%–50%); 
F [27.3%] (12%–50%)MELAS-like (1)

MT-ND6 8 (5.3%) m.14459G>A (1) LS (1) L [90%] (n.a.); F [90%] (n.a.)

m.14484T>C (4) LHON (4) L [97.5%] (90%–100%)

m.14487T>C (2) LS (2) M [98%] (95%–100%)

m.14600G>A (1) LS (1) M [100%] (n.a.); F [100%] (n.a.)

MT-CO3 1 (0.6%) m.9907G>A (1) Leukoencephalopathy (1) M [100%] (n.a.); L [100%] (n.a.); F [100%] 
(n.a.); UEC [100%] (n.a.)

MT-TL1 16 (10.6%) m.3243A>G (15) MELAS (15) L [37.5%] (5%–70%)

m.3242G>A (1) LS (1) M [100%] (n.a.); F [100%] (n.a.)

MT-TI 1 (0.6%) m.4309G>A (1) PEO plus (1) M [80%] (n.a.); L [0%] (n.a.); F [15%] (n.a.); 
UEC [60%] (n.a.)

MT-TW 1 (0.6%) m.5521G>A (1) MELAS-like (1) M [98%] (n.a.); L [38%] (n.a.); F [88%] (n.a.); 
UEC [91%] (n.a.)

MT-TK 7 (4.6%) m.8344A>G (7) MERRF (7) M [77.5%] (70%–90%); L [56%] (40%–70%)

Single large scale 
deletion

41 (27.3%) KSS (9) M [51.6%] (40%–60%)

PS (7) L [72%] (50%–85%)

41 (27.3%) PS to KSS (3) L [60%] (50%–70%)

PEO (12) M [63.5%] (40%–70%)

PEO plus (10) M [60%] (40%–70%)

Abbreviations: F, fibroblasts; KSS, Kearns–Sayre syndrome; L, lymphocytes; LHON, Leber hereditary optic neuropathy; LS, Leigh syndrome; M, 
muscle; MELAS, mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes; MERRF, myoclonic epilepsy with ragged-red fibers; 
mtDNA, mitochondrial DNA; n.a., not available; NARP, neuropathy, ataxia, and retinitis pigmentosa; PEO, progressive external ophthalmoplegia; PS, 
Pearson syndrome; UEC, urinary epithelial cells.
aIn square brackets, heteroplasmic rate for single patient or mean of heteroplasmy for group of patients.
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showed CIV deficiency in two and normal results in four. All pa-
tients harbored an SLSMD, (mean heteroplasmy in muscle = 63.5%, 
range = 40%–70%). The two patients with follow-up data (16.7%, av-
erage = 72 months) worsened but are alive.

PEO plus

In 11 children (7.3%), a “PEO plus” phenotype was identified. Mean 
onset age was 7.6 years (range = 1–14 years). Onset symptoms in-
cluded ocular motility alterations and/or ptosis (81.4%) and cer-
ebellar involvement (18.1%), which in time was found in 63.6%. 
Other symptoms included myopathy (45.4%), hypoacusia (45.4%), 

hypotonia (36.3%), failure to thrive (18.1%), cardiac manifestations 
(27.7%, one conduction block and one dilatative cardiomyopathy), 
renal involvement (18.1%), and diabetes (9%).

MRI findings included BG lesions (62.5%), pontine/mesen-
cephalic tegmentum involvement (50%), and WM abnormalities 
(37.5%). Hyperlactacidemia was seen in 55.5%. Biochemical studies 
found MCDs (42.8%), isolated CI and CIII deficiency (one case each), 
and normal values (one patient). An SLSMD was harbored by 90.9% 
of children; one child was positive for the m.4309G>A mutation in 
MT-TI (9.1%).

At follow-up, available for five patients (45.5%), three children 
worsened, one died, and one remained stable.

Data are summarized in Figure 4.

F I G U R E  2  Leigh syndrome. (a) Age at 
onset distribution. (b) Clinical findings. (c) 
Magnetic resonance imaging axial (above) 
and coronal (below) T2 sequences show 
hyperintensities of putamen in a patient 
with complex I deficiency associated with 
MT-ND3 mutation. (d) Genetic diagnosis 
distribution.
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Kearns–Sayre syndrome

Twelve children (8%) were diagnosed with KSS; three progressed 
from PS to KSS during childhood. Symptoms began at an average 
of 7.2 years (range = 2–18 years) and included growth retardation 
(GR; 37.5%) and ocular motility alterations, renal involvement, hy-
poacusia, and vision loss (12.5% each). In time, all patients showed 
vision loss, 58.3% GR, 75% ataxia, 50% myopathy, and 41.6% hy-
poacusia. One child developed a cardiac conduction defect, one 
diabetes.

MRI data (available in 11 patients) showed typical KSS WM le-
sions (72.7%), pontine or mesencephalic tegmentum lesions (65.4%), 
and BG involvement (36.6%). Spinal dorsal column lesions were pre-
sented by 33.3%.

Hyperlactacidemia was seen in 66.6%. Biochemical studies on 
muscle were performed in five of 12; four of five were normal, and 
one patient showed an MCD. All patients harbored SLSMDs.

Folinic and coenzyme Q10 supplementation was reported for 
five patients. Follow-up data of eight patients (66.7%, average 
time = 50.6 months) showed improvement in one, stable conditions 
in four, worsening in two, and exitus in one.

Data are summarized in Figure 5a–c.

Pearson syndrome

Ten children (6.6%) were diagnosed with PS, with an average 
onset age of 3.7 months (range = 0–12 months); three of them 

F I G U R E  3  Mitochondrial 
encephalopathy with lactic acidosis and 
strokelike episodes (MELAS) and MELAS-
like. (a) Age at onset distribution. (b) 
Clinical findings. (c) Axial (left) and coronal 
(right) fluid-attenuated inversion recovery 
sequences show strokelike lesions in 
occipital, temporal, and parietal lobes. PM, 
psychomotor; SLE, strokelike episode.
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developed KSS and are previously described. Along with hema-
tological features, GR was reported in two (20%). At follow-up, 
pancreatic dysfunction, seizures, hypotonia, PD, and renal in-
volvement were seen in 14.2% each. Hyperlactacidemia was seen 
in two of three children with available data. MRI findings (two 
patients) showed WM alterations and cortical atrophy in one pa-
tient each.

All children harbored an SLSMD in blood (mean hetero-
plasmy = 72%, range = 50%–85%).

Follow-up of five children (50%) showed exitus in two patients 
and progression to KSS in three (two died, one remained stable).

Clinical features are summarized in Figure 5d.

Mitochondrial encephalopathy with ragged-red fibers

Seven patients (4.6%), with an average onset age of 5.4 years 
(range = 0–13 years), harbored the m.8344A>G mutation in MT-TK, 
associated with MERRF. Seizures were present at onset in 42.8%, 
hyperkinetic movements in 28.5%, and vomiting, failure to thrive, 
hypoacusia, neuropathy, and cerebellar involvement in 14.2% each.

Subsequently, 71.4% showed epilepsy, 57.1% cerebellar involve-
ment, 42.8% hypoacusia and hyperkinetic movements, and 28.6% 
myopathy and cognitive impairment. MRI findings were normal in 
80%; one patient showed BG alterations. Hyperlactacidemia was 
seen in 25%.

F I G U R E  4  Progressive external 
ophthalmoplegia (PEO) and PEO plus. (a, b) 
Age at onset distribution of (a) PEO and (b) 
PEO plus patients. (c) Clinical findings of 
PEO plus patients.
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Follow-up of two patients (28.6%, average = 10.5 years), showed 
worsening in one case, stable condition in the other.

Neuropathy, ataxia, and retinitis pigmentosa

Two children (1.3%) exhibited the classic NARP syndrome associated 
with an MT-ATP6 variant: m.8993T>G in one patient and m.8993T>C 
in the other. Average onset age was 4.5 months (range = 2–7 months). 
Family history was positive in the first patient.

At onset, the first patient showed cerebellar signs and the second 
PD. Subsequently, both showed neuropathy, ataxia, and retinopathy; 
pyramidal signs, dystonia, and hearing impairment were observed 
only in the second child. On MRI, both showed cerebellar atrophy. 
They remained stable at follow-up (average = 3 years).

Isolated myopathy

One proband presented at age 7 years with a pure myopathic phe-
notype due to the m.4831G>A mutation in MT-ND2 and has been 
previously described [19].

Leukoencephalopathy

One patient (aged 6 years) presented with PD and hypotonia. At 
30 months, retinopathy, hypoacusia, and hyperlactacidemia were 
found; brain MRI showed a supratentorial cavitating leukoencepha-
lopathy (Figure 6a). Clinical and MRI follow-up were stable.

Isolated CIV defect was detected in muscle and fibro-
blasts. The novel m.9907G>A variant in MT-CO3 was identified, 

F I G U R E  5  Kearns–Sayre syndrome 
(KSS) and Pearson syndrome (PS). (a) 
Age at onset distribution and (b) clinical 
findings of KSS patients. (c) Axial T2 
sequences in a KSS patient shows white 
matter (WM) hyperintensities involved 
subcortical U-fibers with sparing of 
periventricular WM (left), cerebellar WM 
(middle), and thalami (right). (d) Clinical 
findings of patients affected by PS.
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predicting the substitution of glycine in position 234 with aspar-
tic acid (p.Gly121Asp) in the CoIII protein (Figure 6b). This change 
scored very high for likelihood to be deleterious according to ad 
hoc software for pathogenicity prediction (PolyPhen2, MutPred, 
SIFT, and SNP&Go), and the involved amino acid is highly conserved 
(100%) in the phylogenies (Figure 6c).

Almost 100% of mtDNA was mutated in the patient's muscle, 
blood, fibroblasts, and urinary epithelial cells; the patient's mother, 
apparently healthy, showed 69% mutation in urinary epithelial cells 
and 2.3% in blood [17].

Her clinical evaluation, performed after her son's diagnosis, re-
vealed hypomimia, rhinolalia, hypotonia, and neuropathy. MRI de-
tected areas of focal gliosis (Figure 6d).

DISCUSSION

In 20 years, among 902 children with a confirmed MD molecular 
diagnosis, we found 150 patients (16.7%) with an mtDNA patho-
genic defect, similar to other pediatric cohort studies (14.4%–
20.5%) [1–3] but unlike Loos et al. (30%) [13]. Our data confirm 
mtDNA impairment is less frequent than nDNA defects in pedi-
atric MDs.

Neonatal onset of symptoms was reported in 7.5%, similar to 
Honzik and colleagues (10%) [6]. Other studies rarely report mtDNA 
mutations causing symptoms in newborns (<2%) [4, 5]. Similar to 
previous studies, early onset of MDs was mostly found in LS and 
PS [6].

F I G U R E  6  Patient with 
leukoencephalopathy and novel MT-CO3 
mutation. (a) Magnetic resonance imaging 
(MRI) findings in patient; axial T2-
weighted (left), coronal fluid-attenuated 
inversion recovery (FLAIR; middle), and 
sagittal T1-weighted (right) sequences 
show cavitating leukoencephalopathy 
involving deep white matter (WM) and 
corpus callosum. (b) Mitochondrial DNA 
sequence analysis of MT-CO3 gene 
with the m.9907G>A mutation and (c) 
alignment of CoIII protein in different 
species show the high conservation 
of Gly234 residue. (d) MRI findings of 
patient's mother; axial T2-weighted (left) 
and axial FLAIR (right) sequences reveal 
focal gliosis area in supratentorial WM.
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Most symptoms observed at disease onset—PD, hypotonia, sei-
zures, and visceral involvement—were consistent with previous re-
ports [2, 8, 20, 21]. However, central respiratory involvement was 
quite rare (2.5% vs. 25.6% in Hu et al. [22]). Ocular motility alter-
ations and/or ptosis were more frequent both at onset (17.3%) and 
during disease progression (33.3%) than previously reported [3, 13, 
22, 23]. Vision loss was similarly more frequent than expected in 
mtDNA-related MDs (22.6% at onset and 36.6% at follow-up, vs. 
12%–18.5% in literature) [7, 13, 22]. Although this symptom is part 
of the diagnostic criteria for some phenotypes (LHON, KSS, NARP), 
we also found it in other phenotypes (e.g., LS and MELAS, 24% and 
14.2%, respectively).

Our data underline the need to suspect mtDNA-related MDs in 
children presenting with optic atrophy and/or progressive bilateral 
ocular motility defects. Furthermore, a full ophthalmological exam-
ination must be performed in all pediatric patients suspected of an 
MD.

Extraneurological manifestations and myopathy, frequent mani-
festations in adult MDs, were rare in our cohort [24].

The heart was the most frequent organ involved, similar to 
previous series [4, 5]; Honzik et al. [6] reported 40% of subjects 
having neonatal heart failure; however, they analyzed newborns 
with both mtDNA and nDNA mutations, including children with 
TMEM70 mutations, frequently associated with hypertrophic 
cardiomyopathy.

LS (35.8%), LHON (17.7%), and MELAS/MELAS-like (11.2%) con-
stituted the three main phenotypes in our cohort.

LS was mainly caused by mutations in MT-ND genes (55.5%) or 
in the MT-ATP6 gene (42.5%), similar to previous LS series [25–28], 
which included nDNA-related cases.

Among MT-ATP6 mutations, LS was the most frequent pheno-
type (88.4%), whereas NARP syndrome was encountered in only 
two patients. Our data are consistent with recent literature reports 
[29], whereas previously NARP was regarded as a frequent MT-
ATP6-related disorder [30] in children and adults. Notably, these re-
ports often included children who presented with NARP symptoms 
but showed typical LS MRI lesions, which would account for the 
difference in frequency. Furthermore, all patients with NARP syn-
drome presented additional features and a quarter of the LS children 
showed ataxia, contributing to the emerging concept that MT-ATP6 
variants cause a continuous disease spectrum [29].

LHON represents the second most frequent phenotype (17.7%). 
Among pediatric MD series, only some authors found a high inci-
dence of LHON-associated mutations (12%–20%) [2, 6, 7], whereas 
in most cases this phenotype does not appear as frequently [3, 12, 
20, 22]. To date, the only available treatment for LHON is ideben-
one, limited to subjects older than 12 years [31]. In our cohort, 27% 
of LHON patients began showing symptoms of disease before age 
12 years, stressing the need for treatment in this age group.

Similar to previous data  [32, 33], in our report the phenotype 
associated with the MELAS mutation was very variable, ranging 
from mildly symptomatic to a lethal multisystem disease. Suggestive 
symptoms were extremely rare in the neonatal period, and the 

first manifestations occurred in childhood, confirming literature 
data  [33]. SLEs occurred in approximately 60% of our cohort; in-
terestingly, no patients presented with hearing impairment and/or 
diabetes, reported in up to 50% of cohorts comprising adult popu-
lations [32, 33]. Overall, our data underline that the absence of the 
pathognomonic symptoms of MELAS syndrome at disease onset 
should not exclude a possible MELAS diagnosis.

SLSMD-associated phenotypes were seen in 26.9%, the most 
frequent being KSS and PEO (29.2% each), followed by PS and PEO 
plus (24.3% each). A similar distribution has been recently reported 
[12]. In our cohort, renal involvement was seen in one patient only, 
contrary to the 50% of Broomfield et al. [12]. Progression from PS 
into KSS was slightly higher than previous studies (30% vs. 18%–
27%) [12, 34].

All patients affected by MERRF syndrome showed central ner-
vous system symptoms of disease; myopathy and/or exercise intol-
erance was reported in only 28%, but previously described in up to 
70% of m.8344A>G mutated subjects in adult and pediatric cohorts 
[11]. Our data suggest a predominant neurological phenotype and 
rare muscle involvement in childhood.

Most patients had elevated lactate levels. Associated pheno-
types were LS (82.6%), MELAS and MELAS-like (80%), and KSS and 
PS (66.6% each). This finding confirms that normal blood lactate 
does not exclude an MD diagnosis [8, 28] and more specific biomark-
ers are needed.

The most frequent neuroradiological feature was BG involve-
ment (56.7%), consistent with recent reports (40% of mtDNA mu-
tated patients in Fang et al. [7], 47% in Loos et al. [13]). These were 
seen not only in LS children, as expected, but also in other pheno-
types, including PEO plus (62.5%) and KSS (33.3%).

Other findings included WM abnormalities, especially in KSS 
(72.7%) and PEO plus (37.5%), similar to previous studies [35]. No 
patients with predominant WM involvement showed a CI defi-
ciency; therefore, CI-linked leukoencephalopathy appears restricted 
to nuclear-encoded genes [36]. One third of KSS patients also pre-
sented spinal cord involvement, as recently described [37].

Our report confirms that spinal cord impairment in MDs is more 
frequent than expected; this recommends including spinal cord MRI 
in the diagnostic pathway of suspect MDs or of unexplained neuro-
degenerative diseases.

In the patient with the novel m.9907G>A mutation in MT-CO3, 
cavitating WM lesions were reported. Infantile mitochondrial leukoen-
cephalopathies are mostly related to isolated complex deficiencies and 
nDNA gene mutations, especially those associated with aminoacyl-
tRNA synthetase dysfunctions [38, 39], mitochondrial proteins [40, 
41], iron–sulfur cluster-related leukoencephalopathies [42–45], and 
more recently, POLG mutations [46]. However, mitochondrial leuko-
encephalopathies are rarely associated with mtDNA mutations [47].

To date, an MT-CO3 mutation in pediatric MDs has been re-
ported in two patients associated with LS and MELAS, respectively 
[48, 49]. Our case expands the phenotype related to MT-CO3 and 
suggests looking for mtDNA variants in children with undefined 
leukodystrophies.
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Similar to other reports [29, 35], in our cohort the phenotypes 
most frequently leading to exitus were PS, LS, KSS, and MELAS. 
Other unfavorable prognostic factors are onset within the first year 
(46% of the patients who died in our cohort were in this age group) 
and BG involvement (56% of the patients who presented exitus). 
Similar unfavorable prognostic factors have been reported in other 
series [4, 25, 28].

The most frequently detected mtDNA defects were mutations 
in MT-ND genes (38%), mostly associated with a LS (51.2%) or LHON 
(44%) phenotype, similar to previous reports [10].

The m.8993T>G variant in MT-ATP6 was seen in 17% of our pa-
tients, in most cases (95%) associated with LS, similar to other series 
[6, 21].

We reported the MELAS m.3243A>G mutation in approximately 
10% of patients, similar to Cruz et al. (7.4%) [23], whereas in other 
pediatric series it appears to be among the most frequently reported 
mtDNA defects (26%–40%) [2, 3, 7, 13, 20]. Prevalence is especially 
high (51.2%) in a recent childhood Chinese cohort study [22].

Although SLSMDs are a common cause of adult MDs, accounting 
for approximately 16% of all adult mtDNA defects [50], prevalence is 
usually absent [7, 21] or lower in pediatric cohorts (8%–18%) [2, 13, 
20]. In contrast, SLSMDs were frequent in our cohort (26.9%).

CONCLUSIONS

We present the results of a large cohort of patients with mtDNA-
associated MDs. Our data confirm that mtDNA impairment is less 
frequent than nDNA in pediatric MDs. Nevertheless, because early 
onset neurological manifestations occur in different point mutations, 
our evidence suggests mtDNA sequencing must be included in the 
diagnostic workup of neonates and children with a suspected MD.

Ocular involvement is extremely frequent both at onset and 
throughout disease course, underlining the necessity of a full oph-
thalmological examination in these patients. Classical LHON was 
quite frequent in our cohort, especially with onset before 12 years 
of age, highlighting the need for suitable therapy for this age group. 
Extra neurological manifestations and isolated myopathy appear 
rare, unlike adult phenotypes. Unfavorable prognostic factors are 
deep gray matter involvement, early disease onset, and specific 
phenotypes such as PS and LS. SLSMD-related phenotypes appear 
very frequent, whereas MELAS mutation is less frequent than ex-
pected; we add novel data on the distribution of mtDNA defects in 
childhood.

Furthermore, we report a new mtDNA pathogenic variant as-
sociated with cavitating leukodystrophy, expanding the phenotype 
related to mtDNA mutations.
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